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 11 
Abstract: Rapid urbanization promotes socio-economic development but also poses challenges for 12 
urban management, particularly in achieving a balanced job-housing relationship. Such imbalances 13 
can aggravate traffic congestion, increase energy consumption, and reduce commuting efficiency. 14 
Addressing these urban issues requires accurate job-housing space identification (JHSI). The 15 
emergence of spatiotemporal big data in geography has popularized location-based service (LBS) 16 
data, especially mobile signaling data, for JHSI applications. However, employing mobile signaling 17 
data for JHSI presents challenges stemming from both dataset limitations and methodological 18 
complexities, including data accessibility constraints due to privacy concerns. This study develops 19 
an optimized JHSI approach using a novel LBS dataset and changing the identification lens into 20 
base stations. The newly adopted dynamic population data features simplified, privacy-sensitive 21 
fields. By establishing time thresholds for working and living hours based on local daily routines 22 
and applying straightforward statistical processing to these defined base station fields, we can derive 23 
estimated job-housing spaces. This approach not only achieves concise, high-precision 24 
identification with readily available data but also enables lightweight dataset applications with 25 
enhanced feasibility and broader applicability. We implemented this optimized approach in Haidian 26 
District, Beijing, using five days of 2023 data to evaluate method’s applicability and quantify job-27 
housing imbalances at subdistrict and town scales. Results demonstrate the approach’s accuracy and 28 
multi-scale utility in assessing job-housing relationships. We contend that this optimized method 29 
advances JHSI-related perspectives in macro-level daily research, facilitates further LBS-driven 30 
urban applications, and contributes to improving human livability and quality of life in urban areas. 31 
 32 
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1 Introduction 36 

With the development of urbanization, the function of urban areas has transformed from basic 37 
living and production spaces into complex, multifunctional landscapes. As human-designed and 38 
managed environments, urban areas demonstrate substantial differences in spatial organization 39 
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compared to natural ecosystems. As increasing numbers of people migrate to cities in pursuit of 40 
better opportunities, high-quality job-housing spaces have emerged as a crucial metric for assessing 41 
urban planning effectiveness and living standards. The job-housing spaces concept rose to 42 
prominence following British sociologist Ebenezer Howard’s 19th-century “Garden City” proposal 43 
(Howard, 1902). This model conceptualized urban environments where employment and residential 44 
spaces were intentionally co-located to promote a balanced lifestyle. However, urbanization-related 45 
issues continue to disrupt the job-housing balance in urban planning, posing growing challenges to 46 
sustainable development and the balance between human activities and land use. 47 

Rapid urbanization, characterized by large-scale population mobility and extensive urban 48 
sprawl, has become the primary driver of spatial job-housing imbalance. This phenomenon aligns 49 
with the spatial mismatch hypothesis (Kain, 1968) observed during American suburbanization. 50 
Originally developed to analyze and quantify the growing spatial disparity between urban residential 51 
locations and suburban employment opportunities (E. Wang et al., 2011), this hypothesis has 52 
emerged as a critical concern in contemporary urban management (Schleith et al., 2016). 53 
Consequently, numerous urban challenges have become prevalent, including severe traffic 54 
congestion (Sultana, 2002; Li & Liu, 2016), reduced resident satisfaction, altered commuting 55 
behaviors (Lin et al., 2015), prolonged commute times, and increased commuting costs (Yan et al., 56 
2019; Wang et al., 2021). Furthermore, research demonstrates that this imbalance exacerbates 57 
environmental degradation (D. Wang, 2017). Particularly, reliance on private vehicles for daily 58 
work-living travel has contributed to air pollution and other environmental problems in both 59 
developed and developing nations (Guo et al., 2021; Zhou et al., 2016; Sun et al., 2015). China, as 60 
the world’s second-largest economy (Lin et al., 2015), has undergone exceptionally rapid 61 
urbanization since its 1978 economic reforms (Dong & Yan, 2021; Guan et al., 2018), with 62 
urbanization rates increasing by nearly 50 percentage points between 1978 and 2023. This 63 
transformation has made job-housing imbalance increasingly noticeable. Historically, before the 64 
1990s, Chinese housing was primarily employer- or government-allocated and typically proximate 65 
to workplaces. However, post-reform housing policies transitioned from state provision to market-66 
oriented systems (Guan et al., 2018; E. Wang et al., 2011; Zhou et al., 2016), leading to the current 67 
prevalence of spatial separation between workplaces and residences. This shift has generated 68 
substantial academic interest in China’s job-housing dynamics (Ta et al., 2017; E. Wang et al., 2011; 69 
Zhou et al., 2016), particularly since the 1990s (Li & Liu, 2016; Ta et al., 2017). Additionally, 70 
China’s commuting challenges are particularly severe and representative. The 2022 Annual Report 71 
on Commuting Time in Major Chinese Cities reveals that over 70% of Chinese cities exceed 60 72 
minutes in average daily commute time, with this figure continuing to rise. Given these 73 
circumstances, understanding the relationship between job-housing spatial patterns and urban 74 
development becomes crucial for effective urban land use management, environmental planning, 75 
and accessibility enhancement transportation system design (Yao & Kim, 2022). Therefore, accurate 76 
job-housing space identification (JHSI) serves as a vital quantitative foundation for addressing these 77 
challenges and improving urban livability and quality of life.  78 

The implementation of JHSI can be approached through two primary methodologies, 79 
distinguished by their data sources and operational frameworks. The first approach employs 80 
traditional statistical survey methods, including questionnaire surveys (Horner, 2002; Li & Liu, 81 
2016; Long & Thill, 2015; Schleith et al., 2016) as well as population and economic censuses. 82 
However, these traditional methods are constrained by labor requirements, coupled with limited 83 
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extrapolation capacity due to delayed and low-frequency data collection. The second methodology 84 
leverages the growing application of spatial big data in geographical research, which enables 85 
comprehensive, sophisticated, and multiscale urban analyses owing to its high precision and 86 
spatially embedded social attributes. Among contemporary geographical big data types, Location-87 
Based Service (LBS) data have gained particular prominence. Comprising diverse specialized 88 
datasets within LBS data with strong capabilities for monitoring human activities through terminal 89 
positioning (Bi et al., 2023; Hadachi & Pourmoradnasseri, 2022; Mihaylova et al., 2007; Rousell & 90 
Zipf, 2017; Schmidtke, 2020; Zhao & Gao, 2023), LBS data applications have consequently 91 
attracted substantial research attention in JHSI and related urban studies. The accuracy and scope of 92 
these applications continue to expand alongside the increasing volume of available LBS-derived 93 
datasets. Common LBS datasets include: mobile signaling data from personal devices (Ahas et al., 94 
2010; Alexander et al., 2015; Yang et al., 2021), cellular network data (Isaacman et al., 2011; 95 
Gundlegård et al., 2016; P. Zhang et al., 2017), vehicle GPS trajectory data (Mao et al., 2016; Bi et 96 
al., 2023; Liu et al., 2020), Points of Interest (POI) data (Jiang et al., 2015; Y. Zhang et al., 2021), 97 
internet-based positioning data (e.g., social media check-ins), public transportation tracking data 98 
(e.g., smart card data) (Huang et al., 2019; Long & Thill, 2015; Sari Aslam et al., 2019), and mobile 99 
phone trace data (Calabrese et al., 2013). Our study specifically focuses on comparative analysis 100 
with mobile signaling data-driven JHSI approaches, as this data type has recently become the most 101 
widely utilized LBS dataset in urban research. Beyond JHSI applications, mobility tracking through 102 
these datasets serves multiple purposes, including mobility network estimation (Louail et al., 2015), 103 
behavioral analysis (Calabrese et al., 2013; Ta et al., 2017; Yuan et al., 2012), commute pattern 104 
studies (Yan et al., 2019), and examination of mobility-socioeconomic relationships (Zhao & Gao, 105 
2023). Nevertheless, JHSI implementation using mobile signaling data (Alexander et al., 2015; 106 
Calabrese et al., 2013; Yang et al., 2021; Wang et al., 2020; Pei et al., 2014) faces notable challenges 107 
and limitations, particularly concerning inherent dataset characteristics and methodological 108 
constraints of existing JHSI approaches. These include operational complexity, large sample size 109 
requirements, intricate processing demands, and limited accessibility due to privacy concerns 110 
surrounding personal information. Addressing these limitations represents both a significant 111 
research opportunity and necessity, as solutions would advance LBS-driven applications, refine 112 
JHSI methodologies for routine research use, and ultimately improve urban applications. 113 

As the capital of China and a major international metropolis, Beijing has drawn considerable 114 
scholarly and planning attention due to its rapid urbanization and complex spatial patterns in job-115 
housing relationships. Notably, the scale of the study area can significantly influence research 116 
outcomes in urban job-housing spatial analysis, as demonstrated by Horner & Murray (2002) and 117 
Small & Song (1992). In recent years, the intense pressures of urban life resulting from accelerated 118 
urbanization have led districts to evolve into increasingly distinct agglomerations of urban lifestyles, 119 
each with unique characteristics. However, prior research has predominantly focused on the city 120 
scale (Zhao et al., 2011), leaving the spatial relationship between job-housing spaces and their 121 
impact on daily life at the district or finer levels underexplored. Haidian District, one of Beijing’s 122 
sixteen administrative divisions, stands out due to its distinctive demographic profile and its leading 123 
role in education and high-tech industries. The Haidian District Planning (2017–2035) underscores 124 
the district’s strategic importance, outlining specific targets for population control (limiting the 125 
permanent population to 3.13 million by 2035), urban construction land use (capping urban and 126 
rural land use at 2,270 km² by 2035), and coordinated functional spatial patterns. Furthermore, as a 127 
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critical component of the Beijing-Tianjin-Hebei (BTH) coordinated development strategy—which 128 
aims to establish a world-class urban cluster in the region by 2030—Haidian District not only serves 129 
as the primary hub for technological innovation to drive growth in Tianjin and Hebei but also 130 
functions as a key relocation zone for Beijing’s non-capital functions. Given this strategic 131 
positioning, effective management of job-housing spaces in Haidian is crucial for achieving these 132 
multifaceted objectives. 133 

In this study, we aim to accomplish two key objectives: (1) proposing an optimized JHSI 134 
approach that utilizes dynamic population data to address limitations in existing main LBS-driven 135 
JHSI frameworks, and (2) implementing this approach through a district-scale case study in Haidian 136 
District, Beijing, to analyze and map job-housing spaces while quantifying imbalance patterns 137 
across its 22 subdistricts and 7 towns. For the first objective, we introduce a novel LBS dataset—138 
dynamic population data—which, like mobile signaling data, is derived from base station signals 139 
but differs in its representation of aggregated population clusters rather than individual trajectories. 140 
This dataset offers advantages in accessibility and privacy compliance, as it avoids sensitive 141 
personal information. Furthermore, we shift the analytical perspective from individual users to base 142 
stations in our optimized JHSI framework. Instead of relying on movement frequency during work 143 
and living periods, we classify base stations as either “working” or “living” stations based on their 144 
monitoring patterns. This allows JHSI to be assessed through two dimensions: (1) extracting 145 
geographical information and (2) estimating job-housing population distributions based on the 146 
categorized base stations. Overall, this optimized approach, leveraging dynamic population data and 147 
an adjusted analytical lens, enhances cost-efficiency, processing speed, feasibility, real-time 148 
updating capability, and broader applicability. For the second objective, we apply the optimized 149 
framework to Haidian District as a case study, generating quantitative insights into job-housing 150 
relationships at a finer urban scale. Using dynamic population data from April 10–14, 2023, we map 151 
the spatiotemporal distribution of job-housing spaces and employ the job-housing balance index 152 
(JHB) along with its standard deviation (SD) to measure imbalance patterns. The results reaffirm 153 
the method’s lightweight implementation and high accuracy. Finally, we discuss its potential 154 
applications in urban planning, offering policy recommendations not only to address population and 155 
housing challenges but also to support its integration into the Beijing-Tianjin-Hebei (BTH) 156 
coordinated development strategy. 157 

In summary, the job-housing relationship represents a crucial consideration in urban planning 158 
and policymaking for sustainable urban development. Expanding upon the aforementioned studies, 159 
our research seeks to develop optimized methods for monitoring job-housing relationships across 160 
diverse scenarios and scales, thereby supporting both daily commuting analysis and public policy 161 
applications. The study further enhances the understanding of job-housing dynamics in key urban 162 
zones while promoting the application of geospatial big data in urban planning and landscape design 163 
to mitigate housing-population conflicts. The remainder of the paper is structured as follows. Section 164 
2 provides a comprehensive review of main existing LBS-driven JHSI methodologies, along with 165 
theoretical frameworks for data acquisition, including mobile terminal positioning technologies and 166 
the structural characteristics of dynamic population data. Section 3 elaborates on the methodological 167 
framework for the optimized JHSI approach. Section 4 presents an empirical case study conducted 168 
in Beijing’s Haidian District from April 10-14, 2023. Sections 5 and 6 present the discussion and 169 
conclusions, respectively. The research flowchart is illustrated in Figure 1. 170 
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 171 

Figure 1: Flow chart of the research 172 

2 Review of Existing JHSI Methodologies and Theories of Data 173 

Acquisition  174 

2.1. Methodological Frameworks of Existing LBS Data-Driven JHSI 175 
Among existing LBS data-based methods for JHSI identification, we focus on comparing 176 

approaches driven by mobile signaling data, which primarily follow two methodological 177 
frameworks: (1) The most widely used framework relies on individual mobile phone users’ 178 
movement trajectories. Specifically, job-housing spaces are delineated by mining daily commuting 179 
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patterns between residential and workplace locations. First, thresholds for working and living hours 180 
are established based on local daily routines. Next, the frequency of movement trajectories—181 
including locations and time periods—is statistically summarized for each user. Finally, job-housing 182 
spaces are identified based on the prevalence of mobile users during working and living hours. High-183 
frequency locations during workday working hours are classified as workspaces, while those 184 
dominant during living hours are designated as living spaces. The accuracy of this approach heavily 185 
depends on the predefined time thresholds for working/living periods and population mobility 186 
patterns (Alexander et al., 2015; Calabrese et al., 2013; Yang et al., 2021; Wang et al., 2020). (2) 187 
The second framework utilizes aggregated mobile signaling data, analyzing call volume records 188 
from base stations—including temporal distribution patterns and total volume—over short periods 189 
(e.g., one week). By assessing communication activity patterns and applying cluster analysis, this 190 
method infers land use types (e.g., residential and commercial zones, which encompass job-housing 191 
spaces) within each base station coverage area, typically delineated using Voronoi polygons and 192 
interpolated to grids (Pei et al., 2014). 193 

While both frameworks are currently employed in mobile signaling data analysis, they still 194 
face unresolved challenges: (1) Complex operations on signaling data fields (e.g., DBSCAN and 195 
integrated complex cluster analysis), (2) limited scalability across different spatial or temporal 196 
resolutions, (3) data acquisition barriers and high costs due to privacy risks, (4) dependence on large-197 
scale datasets, which impedes rapid JHSI implementation and updates, and (5) insufficient precision 198 
in identification. Consequently, optimizing both the dataset and the recognition logic within these 199 
frameworks remains the key bottleneck in advancing research on job-housing relationship. 200 

2.2 Theories of Data Acquisition 201 
The rapid development of wireless communication and information technologies has driven 202 

advances in geospatial and transportation-related research. Specifically, advancements in GIS, GPS, 203 
and RS (3S) technologies have enhanced LBS, enabling it to conduct positioning using multiple 204 
datasets from mobile terminal devices instead of traditional single-simplified spatial positioning 205 
devices. This progress has significantly promoted geospatial services in commercial use(Liao & 206 
Dong, 2017; Rousell & Zipf, 2017; Schmidtke, 2020; Weng et al., 2017). For example, Rousell and 207 
Zipf (2017) created a prototype navigation service that uses LBS data (sets of landmarks from 208 
OpenStreetMap) to generate pedestrian navigation instructions. Weng et al. (2017) proposed a 209 
method to extract urban landmarks rapidly from spatial databases, using LBS data (sets of check-210 
ins and local accessibility) as weighted parameters. These examples demonstrate the tremendous 211 
potential of LBS technology in urban planning and navigation services. Until today, the widespread 212 
use of smartphones and advanced mobile positioning technologies has strengthened the importance 213 
of location services by providing alternatives to traditional GPS-based methods, and research on 214 
population mobility has expanded significantly (Hadachi & Pourmoradnasseri, 2022; Mihaylova et 215 
al., 2007; Yuan et al., 2012). In this study, dynamic population data, another type of LBS data, has 216 
not yet been widely used but has shown great potential. This data is obtained through base station 217 
positioning technology monitored on mobile phones. In this section, we will detail the principles of 218 
base station positioning technology and the structure of dynamic population data. 219 

2.2.1 Base Station Positioning Technology 220 
Base station positioning technology is based on the fundamental infrastructure of cellular 221 

networks. This network divides the service areas into a cellular structure with each cell having its 222 
own unique cell-ID. The cellular structure commonly has multitype shapes, Voronoi polygons are 223 
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one of the widely methods employed to divide the whole cellular network (Perera et al., 2015; 224 
Sharifzadeh & Shahabi, 2006; Sharifzadeh & Shahabi, 2009; Pei et al., 2014). Base positioning 225 
technology offers a simple, economical, and highly available solution with wide space-coverages 226 
(both outdoors and indoors) without requiring any upgrades to handsets or network equipment, 227 
unlike GPS or WiFi positioning technologies(Perera et al., 2015; Trevisani & Vitaletti, 2004).  228 

In this study, the dynamic population data has been fuzzy processed because the geographic 229 
locations of base stations are often irregularly distributed, and their data access is restricted in public 230 
research. Specifically, grids composed of square cells with a resolution of 200m × 200m were 231 
established based on the original base station data. The geographic coordinates of the grid cells were 232 
assigned to the base stations, allowing for spatial errors of 100 to 200 meters while maintaining only 233 
one base station per cell. Although hexagonal cells are typically used in cellular networks for more 234 
efficient coverage and reduced interference, we consider only square-cell networks where each cell 235 
contains a single base station to prevent monitoring interference (Fig. 2). 236 

Based on the above, we can obtain the simplified general form of LBS data from the following 237 
principle: Specifically, when a visitor with a power-on mobile phone enters the serving area of a 238 
base station, his information will be recorded, thus LBS data on all visitors will be produced. This 239 
data is linked to the base stations by recording the visitor number within a certain period. The 240 
geographic information of the LBS data is the exact location of the base station, identified by a 241 
unique cell ID. The spatial precision of the data depends largely on the service area of the cellular 242 
network (Trevisani & Vitaletti, 2004). For example, the locations of Base Stations 1 to 4 (Fig. 2) are 243 
assigned to visitors with mobile phones when they enter the service area of the cell where the base 244 
station is located. Along with other information, a row of LBS data for each visitor will be generated. 245 
However, fast movement between base stations and staying time of the visitors will affect the 246 
precision of LBS data. For instance, repeat recordings of the moving drivers in different base stations 247 
will lead to error in LBS data. These effects often occur in certain LBS data, such as mobile signaling 248 
data, which may become extensive and noisy during specific periods. Data processing techniques 249 
are required to remove the noise, including ‘ping-pong switching’ analysis and clustering.  250 

 251 
Figure 2: A Simplified View of the Cellular Network and four Examples of Base Station Monitoring 252 

2.2.2 Overview of the Dynamic Population Data Structure 253 
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Dynamic population data is the sequence of population deduced from mobile phone signaling 254 
data. Mobile signaling data based on the monitoring functions of mobile base stations, is widely 255 
used in urban studies based on its diverse data attributes. These include unique IDs of each base 256 
station and the mobile phone users, personal information of mobile phone users (such as age), 257 
geographical location of base station, lasting time of the signal, and the types of mobile device 258 
(Okmi et al., 2023; Yang et al., 2021). In contrast, dynamic population data has more concise and 259 
general attribute about the base stations and mobile phone users. In this section, the overview of 260 
dynamic population data structure will be given in following 2 aspects: 261 
1. Simplicity and Easy-Accessibility of Dynamic Population Data 262 

Dynamic population data have simpler attributes than mobile signaling data. Only the key 263 
information of the mobile users is kept, such as the base station location (i.e., “longitude” and 264 
“latitude”), recording time (i.e., “Year-Day-Time”), the Administration Name, and the population 265 
number in each base station (i.e., “POPu”). In the dynamic population data, all information related 266 
to privacy is removed, making it more accessible to the publics compared to mobile signaling data. 267 
2. More General and Simple Monitoring Principles of Dynamic Population Data 268 

Compared with mobile signaling data, we utilized dynamic population data is based on general 269 
and simplified monitoring principles. It provides 24 recordings each day at one-hour intervals. 270 
Additionally, this principle avoids repeated recordings of the same visitor at the same base station 271 
within an hour and excludes useless short-period recordings. Only the recordings of the visitor who 272 
stayed the longest at a given base station within each hour will be retained. Table 1 gives a sample 273 
of dynamic population data from four base stations in Beijing’s Haidian District at 0:00 on April 10, 274 
2023. The first row of Table 1 indicates that “20**” visitors were in the base station of (116. *****°E, 275 
39.*****°N) in Haidian District of Beijing at 00:00, April 10th, 2023. This data is simpler compared 276 
to mobile signaling data. In mobile signaling data, information about User A and his personal details 277 
such as age “M”, location (Longitude, Latitude), and actions using the mobile from tn to tm are 278 
recorded in a field. 279 

Table 1: Example of Dynamic Population Data Attribute Fields 280 
Base 

station Longitude Latitude Administration Name Year-Day-Time POPu 

1 116.*****°E 39.*****°N Haidian District, Beijing 2023-0410-00 20** 
2 116.*****°E 39.*****°N Haidian District, Beijing 2023-0410-00 15** 
3 116.*****°E 39.*****°N Haidian District, Beijing 2023-0410-00 15** 
4 116.*****°E 39.*****°N Haidian District, Beijing 2023-0410-00 13** 

Note: This table presents a sample of dynamic population data monitored in the Haidian District, Beijing, with a 281 
spatial resolution of 200m x 200m. The geographic coordinates are based on the WGS84 coordinate system. The 282 
“***” is used for privacy protection. 283 

This study employs dynamic population data that strictly adheres to China’s Personal 284 
Information Protection Law (PIPL) and relevant regulations through comprehensive technical and 285 
administrative safeguards. The dataset contains no sensitive personal information, as all collected 286 
data were pre-aggregated and anonymized without including device IDs or any personally 287 
identifiable information. All analyses were conducted exclusively at the aggregate level, ensuring 288 
no individual behaviors could be traced. For spatial anonymization, raw base station positioning 289 
data were processed into 200m×200m grids, with system-generated grid centroids offset by at least 290 
100m from actual base station locations, while temporal resolution was reduced to 1-hour intervals 291 
to further enhance privacy protection. The data processing protocol fully complies with the 292 
anonymization requirements specified in GB/T 35273-2020 Information Security Technology - 293 
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Personal Information Security Specification, ensuring complete regulatory compliance. 294 

3 Methods 295 

3.1 Optimized Framework for JHSI Using Dynamic Population Data 296 
3.1.1 Framework of Processing Steps 297 
Step 1: Data Preprocessing 298 

The dynamic population data in Table 1 is originated from the monitoring records of all base 299 
stations. This step involves re-organizing the attribute fields of the data from the base stations (Fig. 300 
3). It aims to ensure all the records of same base station being grouped into one dataset. Additionally, 301 
the fields “Day” and “Time” are separated from the “Year-Day-Time” field for further analysis. For 302 
example, Table 2 gives an example of organized data attribute fields by data preprocessing, the 303 
population number monitored by the base station 1 with (116.*****°E, 40.*****°N) in four periods: 304 
2 AM, 3 AM, and 4 AM on April 10th, and 9 AM on April 11th was identified. 305 

Table 2: Example of Organized Data Attribute Fields. 306 
Base Station Longitude Latitude Administration Name Time Day POPu 

1 116.*****°E 40.*****°N Haidian District, Beijing 2 410 9** 
1 116.*****°E 40.*****°N Haidian District, Beijing 3 410 7** 
1 116.*****°E 40.*****°N Haidian District, Beijing 4 410 6** 
1 116.*****°E 40.*****°N Haidian District, Beijing 9 411 15** 

Note: This table presents a sample of dynamic population data monitored in the Haidian District, Beijing, with a 307 
spatial resolution of 200m x 200m. The geographic coordinates are based on the WGS84. The “***” is used for 308 
privacy protection.  309 

 310 
Figure 3: Data Preprocessing in the optimized JHSI Framework  311 

Step 2: Identification of “Working Base Stations” and “Living Base Stations” 312 
In this step, the thresholds on working and living time are set up based on the daily life patterns 313 

of local people. The base stations will be defined as working or living ones based on the thresholds 314 
through statistical frequency data processing (Fig. 4). After the working base stations and living 315 
base stations are defined, the spatial pattern of job-housing spaces can be derived. In practice, the 316 
location of the working and living base stations will used as symbols of the location information of 317 
job-housing spaces, respectively. 318 
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 319 
Figure 4: Identification of “Working Base Stations” and “Living Base Stations” in the Optimized JHSI Framework  320 

Step 3: Noise Reduction in Working Base Stations 321 
Before the statistical process, it is necessary to remove the noise information from the working 322 

base stations for better accuracy. This is because population mobility is more significant during 323 
working hours at working base stations compared to living base stations. Thus, we only performed 324 
noise reduction on working base stations. A group of all job base stations is organized by the “Day” 325 
field, as shown in Table 3. Detailed procedure is as follows (Fig. 5).  326 

Firstly, based on all job base stations, we calculate the total “POPu” field for each “Day”, 327 
referred to as “Total POPu”. Then, the relationship between the “Time” field and the “Total POPu” 328 
is established to identify the general trends of this relationship. Secondly, one or more “Day” groups 329 
with significant fluctuation anomalies, which show trends obviously different from other “Day” 330 
groups, will be identified as noise. After that, we remove the entire field recordings of the noise in 331 
each working base station. Finally, in each base station, we calculate the average correlation 332 
coefficient for the remaining “Day” groups and remove the entire field recordings of the “Day” 333 
group with the lowest average correlation coefficient. The remaining fields in each working base 334 
station are then utilized for further analysis. 335 

 336 
Figure 5: Noise Reduction in Working Base Stations in the optimized JHSI Framework 337 

Step 4: Statistical Analysis of Working and Living Base Stations 338 
Based on the previous step, the geographical spatial information of working-living spaces was 339 

obtained. In this step, the final population estimation for each working and living base station will 340 
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be determined through data processing and statistical analysis (Fig. 6). Specifically, the average 341 
number of the remaining “POPu” field will be calculated based on the living time at each living 342 
base station. Additionally, due to the significant characteristics of population mobility during 343 
working hours, the average number for working base stations will be calculated during several 344 
designated working times, such as 8 am, 11 am, and 4 pm(Yang et al., 2021). 345 

 346 
Figure 6: Statistical Analysis of Working and Living Base Stations in the optimized JHSI framework 347 

Step 5: Precision Evaluation 348 
Current research on JHSI often inadequately addresses precision evaluation (Zheng et al., 349 

2023). Given the strong correlation between dynamic population data and mobile signaling data, 350 
this study adopts a precision evaluation framework for mobile signaling data-driven methods, 351 
emphasizing consistency between identified job-housing population distributions and the actual 352 
spatial logic of the study area (Fig. 7). Specifically, precision is verified by comparing regional 353 
living/working population statistics with identification results in terms of quantitative relationships 354 
(Wang et al., 2020). Two key considerations emerge: (1) Data representativeness: Dynamic 355 
population data primarily reflects mobile user monitoring, with coverage limited to specific carrier 356 
subscriber groups. Due to privacy constraints, obtaining complete datasets from all carriers remains 357 
challenging (not all provide well-protected dynamic population data). Thus, this study applies a 358 
scaling method using an “expansion coefficient” (estimated 60–70%) derived from mobile market 359 
statistics to align coverage with actual user proportions. (2) Statistical data preprocessing: Since job-360 
housing relationships describe spatial connections between workplaces and residences of employed 361 
populations, non-working residents must be excluded from raw residential statistics before precision 362 
evaluation but retaining unprocessed employment data. Considering China’s compulsory education, 363 
age structure, and retirement policies (60 for men, 55 for women), we exclude populations aged 0–364 
14 and over 65 from raw statistics before expansion coefficient adjustment to derive the final 365 
“comparative value” (Formula (1)). This standardized methodology ensures indicator comparability 366 
and rigorous precision evaluation. 367 

Based on this framework, JHSI precision is evaluated by calculating a precision index using 368 
the identified populations and comparative values (Formula (2)), with the full process illustrated in 369 
Figure 7. Note that temporal mismatches between statistical surveys and identification results 370 
introduce unavoidable time-lag errors, which should be minimized where possible. 371 

    i iComparative value Expansion coefficient Processed Statistical data= ×   (1) 372 
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Identified PopulationPrecision index
Comparative value

=  (2) 373 

In Formula (1) and (2), the subscript i  , covers both working and living scenarios, which 374 
respectively correspond to the employment-related and residence-related population values 375 
processed in the aforementioned steps. 376 

 377 
Figure 7: Precision Evaluation in the optimized JHSI framework 378 

3.1.2 Improvement of the Optimized JHSI Approach with Dynamic Population Data 379 
Compared to existing JHSI approaches based on LBS data, particularly those relying on mobile 380 

signaling data, our optimized method offers notable advancements. (1) The optimized JHSI 381 
approach is simpler, faster, and more precise. Dynamic population data employs straightforward 382 
fields (e.g., the “POPu” field for population mobility clustering), reducing data processing 383 
complexity. The method focuses on each base station—which have fixed locations—enabling rapid 384 
implementation and broader regional-scale applicability. Unlike mobile signaling data driven that 385 
require substantial computational resources and clustering algorithms (e.g., DBSCAN), the 386 
optimized JHSI framework is user-friendly and adaptable to diverse urban contexts. Furthermore, 387 
since dynamic population data contains no personally identifiable information, it is highly accessible, 388 
allowing the method to function as a simple, single-source-driven solution. Additionally, our 389 
approach more efficiently defines base stations from a functional perspective while using 390 
straightforward statistical processing to identify stable monitoring trends. This simplifies complex 391 
operations such as supervised classification and clustering while establishing a foundation for high-392 
precision identification (particularly in contrast with the work of Pei et al., 2014). (2) The optimized 393 
JHSI framework performs effectively with smaller sample sizes. By shifting the analytical focus to 394 
spatially stable base stations—rather than individual mobility patterns—the method enables feasible 395 
implementation with lightweight datasets. In contrast, traditional approaches relying on mobile 396 
signaling data often demand larger samples (e.g., Wang et al., 2020, who used one month of mobile 397 
signaling data). The reduced data requirements also facilitate dynamic monitoring and significantly 398 
shorten update cycles. (3) The optimized JHSI approach demonstrates higher feasibility and broader 399 
applicability. Many LBS datasets are restricted due to corporate or institutional ownership and high 400 
access costs, limiting their availability to public and independent researchers. In contrast, dynamic 401 
population data is more accessible, cost-effective, and suitable for routine use by public and non-402 
institutional organizations across various scenarios. Since it excludes sensitive user information or 403 
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detailed activity records, the method enhances the practicality of JHSI applications. Moreover, it 404 
supports multi-scale adjustments based on research needs, enabling further investigations into job-405 
housing imbalances and spatial functionality at finer scales. 406 

3.2 Calculating of Job-Housing Imbalance  407 
After completing the procedure, the urban job-housing spaces will be identified, including 408 

information on working and living locations, as well as the job-housing populations. Then, we can 409 
observe the overall distribution of job-housing spaces through visualization. Additionally, the more 410 
detailed imbalance in job-housing spaces at finer scales, such as subdistricts and towns, can be 411 
quantified by calculating indices of job-housing imbalance, commonly using the Job-Housing 412 
Balance (JHB) index and its standard deviation (SD) (formulas (3) and (4)) (Weitz et.al, 1997; Wang 413 
et.al, 2022).  414 

 
/
/

ij i
ij

ij i

W W
JHB

L L
=  (3) 415 

 1ijSD JHB= −  (4) 416 

In formula (3) and (4), ijJHB  represents the JHB index for subdistricts or towns j  in district 417 

i . ijW  denotes the number of employed people in subdistricts or towns j  in district i , while iW  is 418 

the total number of employed people in district i . Similarly, ijL  indicates the number of residents 419 

in subdistricts or towns j  in district i , and iL  is the total number of residents in district i .  420 

If 1ijJHB = , it indicates that the employment and residential functions are matched. If 1ijJHB > , 421 

it means the proportion of employed people is higher than that of residents, suggesting that the 422 

employment function is stronger than the residential function. Conversely, if 1ijJHB < , it indicates 423 

that the residential function is dominant. Additionally, the standard deviation (SD) of the JHB index 424 
can be used to measure the degree of job-housing spatial matching in the area. A smaller SD value 425 
indicates a better match between working and living spaces, while a larger SD value indicates a 426 
poorer match between them.  427 

4 Case Study in Haidian District, Beijing, China 428 

In this section, the optimized approach was employed to identify the Job-housing spaces in 429 
Haidian District by using dynamic population data from April 10th to April 14th, 2023 (five 430 
consecutive workdays, without including the effects of holidays or other factors). 431 

4.1 Study area 432 
Haidian District, one of Beijing’s sixteen administrative districts, is situated in the northwestern 433 

and western parts of the city, covering an area of approximately 430.8 km². As of 2023, it had a 434 
permanent population of 3.125 million, accounting for about 2.6% of Beijing’s total area. In the 435 
same year, Haidian’s GDP reached 1,102.02 billion RMB, representing 25.2% of Beijing’s total 436 
GDP (Haidian District Statistics Bureau 2024, 2024). The district is strategically positioned as a hub 437 
for high-quality education (hosting more than eighty universities), information technology, and 438 
scientific innovation. According to the Haidian District Planning (2017–2035), the area is slated to 439 
become a pivotal zone for China’s political culture, technological advancement, and economic 440 
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expansion. It has already emerged as a major center for internet companies and high-tech research 441 
and development (R&D). However, the rapid growth of education and internet technology has also 442 
accelerated urbanization, leading to associated urban challenges in Haidian District. 443 

Administratively, Haidian consists of 22 subdistricts and 9 towns, each exhibiting distinct 444 
characteristics that contribute to a diversified development pattern. Data from the Haidian District 445 
Fourth National Economic Census Major Data Bulletin (2020) and the Haidian District Seventh 446 
National Population Census Bulletin (2021) highlight some key areas: Zhongguancun Subdistrict is 447 
renowned for its innovation-driven ecosystem, housing 19,250 legal entities in secondary and 448 
tertiary industries as of 2018. Haidian Subdistrict, home to prestigious institutions such as the 449 
Chinese Academy of Sciences, Peking University, and Tsinghua University, serves as an academic 450 
and research nucleus. Xueyuan Road Subdistrict had a permanent population of 226,315 in 2020 451 
and is distinguished by its concentration of higher education institutions. Beixiaguan Subdistrict and 452 
Zizhuyuan Subdistrict, with populations of 146,366 and 129,367 respectively, attract residents and 453 
businesses due to their cultural and educational amenities. Ganjiakou Subdistrict stands out as the 454 
most economically dynamic, with total assets amounting to 2,297.73 billion RMB in 2018. Qinghe 455 
Subdistrict and Xisanqi Subdistrict have experienced rapid development, recording populations of 456 
147,395 and 157,643, respectively. Meanwhile, Sijiqing Town and Xibeiwang Town exhibit high 457 
population densities, with 162,700 and 164,795 residents as of 2020. Figure 8 illustrates the study 458 
area, featuring a 90m digital elevation model (DEM) of Beijing and highlighting the spatial 459 
distribution of subdistricts and towns within Haidian District. 460 

 461 
Figure 8: Study Area of Haidian District 462 
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Note: Figure 8: General information of the study area. (a) The location of Beijing in China; (b) The location of 463 
Haidian District in Beijing with 90m DEM; (c) The composition of Haidian District with detailed subdistrict 464 
information. All geographic data were collected from the Geospatial Data Cloud (http://www.gscloud.cn) and the 465 
National Platform for Common Geospatial Information Services (https://www.tianditu.gov.cn/?4). 466 

4.2 Approach Utilization and Data sources 467 
4.2.1 Data Sources 468 

In this study, two types of datasets are used: the LBS datasets and the statistical datasets. 469 
Specifically, the description and sources of dynamic population data, permanent resident population, 470 
employee population, other population and aging population are all shown in Table 3. 471 

Table 3 Data Sources in this Case Study 472 

Data Type Description Data Source 

Dynamic 
population 

data 

Data is organized into 200m x 200m grids, from 
April 10th to April 14th, 2023, in Haidian District. 

The dynamic population data was 
provided by a licensed 

telecommunications service provider in 
China under anonymized processing. 

Permanent 
resident 

population 

The 2023 permanent resident data for Haidian 
District (preprocessed with other and aging 

population) provided the reference for comparing of 
identified living population results. 

Beijing Statistical Yearbook (2024): 
[https://nj.tjj.beijing.gov.cn/nj/main/20

24-tjnj/zk/indexeh.htm] 

Employed 
population 

Haidian District’s 2023 year-end urban non-private 
sector employment data served as the reference for 

comparing with identified working population 
results. 

Beijing Regional Statistical Yearbook 
(2024): 

[https://nj.tjj.beijing.gov.cn/nj/qxnj/202
4/zk/indexch.htm] (in Chinese) 

Other 
population 

Haidian District’s 2023 year-end 0-14 age 
population data served as a proxy for non-working 
residents and was used as exclusion criteria when 
preprocessing the permanent resident dataset for 

precision evaluation. 

Beijing Regional Statistical Yearbook 
(2024): 

[https://nj.tjj.beijing.gov.cn/nj/qxnj/202
4/zk/indexch.htm] (in Chinese) 

Aging 
population 

Haidian District’s 2023 elderly population (65+) 
statistics served as a proxy for non-working residents 

and were used as exclusion criteria when 
preprocessing the permanent resident dataset for 

precision evaluation. 

Beijing Regional Statistical Yearbook 
(2024): 

[https://nj.tjj.beijing.gov.cn/nj/qxnj/202
4/zk/indexch.htm] (in Chinese) 

4.2.2 The Application of the Optimized JHSI Framework in Haidian District 473 
Firstly, the thresholds and statistical time periods for defining working and living base stations 474 

are given. Specifically, according to the Third National Time Use Survey Bulletin (No. 3) released 475 

by China’s National Bureau of Statistics in 2024 (National Bureau of Statistics of China, 2024), the 476 

survey analyzed residents’ weekly time allocation across major life domains including paid work, 477 

unpaid labor, and transportation, with breakdowns by age group, gender, and household registration 478 

status (urban/rural). The data reveals that urban and rural residents averaged 6 hours 23 minutes and 479 

6 hours 22 minutes of daily paid work respectively, with the working-age population (18-59 years) 480 

reaching 6 hours 32 minutes per day. For essential physiological activities, all demographic groups 481 

maintained a consistent daily average of approximately 12 hours 30 minutes, never dipping below 482 

12 hours. Building upon these statistical recordings and incorporating the commute time thresholds 483 

established by Chinese researchers in JHSI-related studies (Table 4), we have accordingly set 484 

temporal parameters for job-housing patterns in Haidian District. In our study, the working time 485 

period was set from 7:00 am to 5:00 pm on workdays, and the living time period was set from 9:00 486 

pm on the previous workday to 5:00 am on the next workday.  487 

Table 4 Literature Parameters for Working and Living Time Thresholds 488 

Time Segment 
Threshold Threshold Value Statistical Time 

Frame Reference Source 

http://www.gscloud.cn/
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Working time 
period 9:00-17:00, 8:00-18:00 Recurring for ≥10 

days 
(Wang et al., 2020),  
(Zheng et al., 2023) 

Living time 
period 

21:00-7:00(next day), 21:00-
8:00(next day), 

0:00-6:00, 20:00-5:00(next day) 

Recurring for≥10 
days (or≥15 days) 

(Wang et al., 2020), (Zheng 
et al., 2023), (ZHANG et al., 

2023) 
Note: While the referenced studies in Table 4 analyzed monthly data, our study employs weekly observations to 489 
enable finer-grained temporal analysis. 490 

Secondly, for identifying working and living base stations: When a base station conducts 491 
monitoring with full performance throughout the entire working time period on each research 492 
workday, it will be designated as a working base station. However, due to the complex regular trends 493 
of population mobility during living time, if a base station conducts monitoring that matches the 494 
living patterns of Haidian District—i.e., at six or more time points during each living time period 495 
on a full research workday—it will be designated as a living base station. 496 

Finally, for noise reduction and statistical processing, we plotted a trend of the “Time” field 497 
against “Total POPu” for each “Day” in all working base stations (Fig. 9). After observing the 498 
regular trends in these relationships, an obvious fluctuation with a different trend was identified in 499 
the records of April 10, which was classified as noise (Fig. 9). Then, all the records of the noise were 500 
removed from each working base station. Additionally, in the final data processing for working base 501 
stations, based on Section 3.2.4 and table 4, the selected working time points to calculate the average 502 
number of the “POPu” field, as an estimate of the working population, are 8:00 am, 11:00 am, and 503 
4:00 pm (Zheng et al., 2023). 504 

 505 
Figure 9: Trend Analysis for All Job Base Stations on “Total POPu” and “Day Group” 506 

4.3 Results  507 
4.3.1 The Results of JHSI in Haidian District 508 

Based on the defined steps and time thresholds, the job-housing spaces in Haidian District, 509 
Beijing, were identified, and their spatial distribution is illustrated using kernel density maps in Fig. 510 
10 (a) and (b). The analysis classified 1,145 base stations as working base stations and 3,172 as 511 
living base stations. In terms of population distribution, the estimated working population in Haidian 512 
District was approximately 721,713, while the living population was around 1,177,927. As shown 513 
in Fig. 10, the kernel density maps clearly reveal the spatial patterns of job-housing distribution, 514 
with concentrations primarily observed in the northern, eastern, and southeastern parts of Haidian 515 
District. The smaller spatial extent of residential areas compared to workplaces, combined with the 516 
kernel density analysis, suggests a notable imbalance between job and housing distributions. 517 

To evaluate the precision of our estimates, we followed the methodology outlined in Step 5 518 
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(Section 3.1.1) and referenced the statistical data in Table 3. According to official statistics, Haidian 519 
District had a permanent resident population of 3.125 million in 2023, consisting of 1.684 million 520 
employed individuals, 0.484 million elderly residents, and 0.371 million other populations. To 521 
ensure comparability with the dynamic population dataset, we applied an expansion coefficient of 522 
65% to adjust the statistical figures. After calibration, the working and living populations were 523 
estimated at approximately 1,094,600 and 1,475,500, respectively. When compared to our dynamic 524 
population-derived results, discrepancies of 372,887 (working population) and 297,573 (living 525 
population) were observed, yielding precision indices of 66% for working population identification 526 
and 80% for residential population identification. Despite these differences, the overall trends 527 
remain consistent, and the margin of error is within an acceptable range for job-housing space 528 
analysis from comparable studies (e.g., Wang et al., 2020). Potential sources of discrepancy include 529 
the incomplete exclusion of non-working residents and the absence of real-time employment records 530 
for private-sector workers in the current statistical indicators used to represent occupational 531 
populations (Table 3). 532 

 533 
Figure 10: Kernel Density Map of Urban Working Spaces (a) and Living Spaces (b) in Haidian District 534 

4.3.2 The Results of Job-Housing imbalance Calculation in Haidian District’s 22 535 
Subdistricts and 7 Towns 536 

Based on the optimized JHSI framework results from Section 4.3.1 and Formulas (3)-(4), we 537 
computed the JHB and SD indexes for Haidian District, representing working-living functional 538 
intensity and job-housing spatial imbalance patterns respectively. Following the methodology in 539 
Section 3.2, we established five classification intervals to distinguish areas with JHB values below 540 
or above 1 (Figure 11a). The JHB values in Haidian District range from 0.237094 (Shangzhuang 541 
Town) to 1.987488 (Haidian Town), exhibiting relatively compact spatial patterns without 542 
fragmented distribution. Specifically, 8 subdistricts and 6 towns with JHB<1 occupy most of 543 
Haidian's periphery, particularly at district boundaries: northern/northeastern (adjacent to 544 
Changping District), western (bordering Shijingshan and Mentougou Districts), and eastern 545 
(neighboring Chaoyang District). This category includes subdistricts with values approaching 1, 546 
such as Xueyuan Road (0.985178), Malianwa (0.963796), and Tiancun Road (0.961074). 547 
Conversely, 14 subdistricts and 1 town with JHB>1 form a compact cluster in southern Haidian, 548 
predominantly showing values between 1-1.5. While Zizhuyuan Subdistrict (1.079088) approaches 549 
balance, areas like Zhongguancun (1.155604), Shangdi (1.194954), and Yongding Road (1.517918) 550 
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demonstrate clear employment dominance. Overall, job-concentrated areas are orderly distributed 551 
in eastern/southeastern Haidian, proximate to Beijing’s central districts (Dongcheng, Xicheng, and 552 
Chaoyang). 553 

For SD analysis, we applied natural breaks classification to categorize the 29 values into five 554 
groups (Figure 11b). Haidian Town shows the maximum SD (0.987488), while Xueyuan Road 555 
Subdistrict has the minimum (0.014822). The SD distribution across 22 subdistricts and 7 towns 556 
reveals a highly fragmented spatial pattern, with most areas ranging 0.117052-0.245232. The most 557 
imbalanced areas include Haidian Town (0.987488), Tsinghua Yuan Subdistrict (0.970939), and 558 
Shangzhuang Town (0.762906) - the latter being residence-dominated while the former two are 559 
employment-centered. Yongding Road Subdistrict (0.517918) exhibits notably higher imbalance 560 
than Zhongguancun (0.155604) and Shangdi (0.194954). Furthermore, most boundary areas 561 
adjacent to Beijing’s central districts (Chaoyang, Dongcheng, Xicheng, and Fengtai) display 562 
relatively high SD values, indicating pronounced job-housing imbalance. 563 

 564 
Figure 11: Distribution of the Job-Housing Balance (JHB) Index (a) and its Standard Deviation (SD) (b) at the 565 

Subdistrict and Town Scale in Haidian District 566 

5 Discussion 567 

5.1 Spatial Distribution of Job-Housing Relationships in Haidian District  568 
The spatial distribution of job-housing relationships in Haidian District is illustrated through 569 

two maps: the distribution of job-housing spaces (Fig. 10) and imbalance patterns (Fig. 11). First, 570 
the analysis of job-housing spaces reveals distinct clustering patterns, with employment 571 
concentrations primarily located in two key regions: the northwest (e.g., Northwest Wang Town, 572 
Wenquan Town, and Sujiatuo Town), the southern and southeastern zones adjacent to Shijingshan, 573 
Chaoyang, Changping, and Beijing’s core urban districts (Dongcheng and Xicheng) (Fig. 10). This 574 
spatial arrangement aligns with Haidian’s industrial planning, as documented in the Beijing 575 
Industrial Layout Map (Beijing Municipal Development and Reform Commission, 2024). 576 
Specifically: (1) The Zhongguancun Future Science Park—specializing in next-generation IT, 577 
intelligent connected vehicles, tech services, and healthcare—is concentrated along Haidian’s 578 
borders with Shijingshan, Chaoyang, Changping, and the urban core. (2) The Shangdi Cluster in 579 
northern Haidian (20.68 km²), spanning Northwest Wang, Wenquan, and Sujiatuo Towns, includes 580 
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the Shangdi, Yongfeng, and Cuihu subdistricts and hosts R&D centers of major tech firms such as 581 
Baidu’s headquarters and Huawei’s Beijing Research Center. (3) The Zhongguancun Demonstration 582 
Zone follows a dual-core structure, with the northern core comprising the Shangdi-Xisanqi, 583 
Yongfeng, and Cuihu clusters, while the southern/southeastern core is anchored by the 584 
Zhongguancun Original Innovation Cluster. (4) High-tech parks (e.g., Zhongguancun No. 1, IC 585 
Design Park, Software Park, Dongsheng Tech Park, and JinYu Smart Factory) and specialized 586 
industrial zones (e.g., Shangdong Digital Valley and Digital TV Industrial Park) are situated near 587 
Haidian’s boundaries with Changping and Chaoyang. These observations suggest that the primary 588 
drivers of job space formation in Haidian are its strong technology sector—concentrated along its 589 
periphery with central and neighboring districts—and its metro network (with key hubs such as 590 
Shangdi, Zhongguancun, Qinghe, and Xizhimen), which enhances connectivity to Changping, 591 
Dongcheng, and Xicheng, facilitating cross-regional industrial collaboration, labor mobility, and 592 
commuting flows. Consequently, this job concentration influences housing demand, living costs, 593 
and price disparities, resulting in a housing distribution that largely overlaps with employment 594 
spaces but covers a more limited area. 595 

Second, to assess the job-housing imbalance exacerbated by Haidian’s industrial layout, this 596 
study quantifies the dominant intensity and spatial patterns of employment-residence functions at 597 
the subdistrict and town level using joint measurements of JHB and SD (Fig. 11). Key findings 598 
include: (1) Job-dominant areas (JHB>1) exhibit strong spatial agglomeration, primarily in 599 
southern/southeastern core zones such as Shangdi and Zhongguancun subdistricts. This 600 
concentrated employment pressure corresponds with Haidian’s high-tech industrial clusters but 601 
intensifies job-housing imbalances in core areas (higher SD values), reinforcing the link between 602 
job-housing dynamics and industrial spatial planning. Industrial agglomeration may also elevate 603 
housing prices, rents, and living costs, creating a filtering effect that displaces residential demand 604 
outward. (2) Housing-dominant areas (JHB<1) are clustered in northern and southern peripheral 605 
zones (e.g., Shangzhuang and Wenquan Towns). Notably, among the three areas with the highest 606 
SD values (Haidian Subdistrict, Qinghuayuan Subdistrict, and Shangzhuang Town), Shangzhuang 607 
exhibits a unique residence-dominated imbalance, contrasting with the employment-dominated 608 
imbalance in the other two. As a transitional zone between Haidian and Changping, Shangzhuang 609 
serves as a critical residential pressure absorber in the regional job-housing system. Additionally, 610 
China’s school district policy—which ties school admission to residential location—likely 611 
exacerbates housing scarcity and contributes to intensified residential clustering in peripheral areas 612 
like Shangzhuang. 613 

5.2 Spatiotemporal Evolution of Job-Housing Imbalance at the Subdistrict and Town 614 
Scale in Haidian District  615 

Haidian District is a pivotal region in Beijing’s development strategy. Using the optimized 616 
JHSI framework, we analyzed 2023 data, revealing that the spatial distribution of JHB exhibits a 617 
compact pattern, whereas SD appears fragmented. To assess the spatiotemporal evolution of job-618 
housing imbalance at the subdistrict and town scale over the past five years, we compare our findings 619 
with a similar study by Wang et al. (2020) based on 2018 data. Although the overall JHB pattern 620 
remains largely unchanged since 2018, the fragmentation level of SD has increased in 2023. Notably, 621 
the value ranges for both JHB and SD in 2023 are significantly narrower than those in 2018, 622 
indicating substantial progress in job-housing balance across Haidian District. In 2018, a greater 623 
number of subdistricts and towns—particularly in southern Haidian, adjacent to Beijing’s urban 624 
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core—recorded JHB values exceeding 1. 625 
Specifically, in 2018, employment functions were heavily concentrated in subdistricts such as 626 

Zhongguancun (JHB: 3.51–10.51), Shangdi (JHB: 2.51–3.5), and Yongding Road (JHB: 1.51–2.5), 627 
where JHB ranges were markedly wider than in surrounding areas. Similarly, SD values highlighted 628 
pronounced job-housing separation and elevated pressure in Zhongguancun, Shangdi, Qinghuayuan, 629 
Yanyuan, and Haidian subdistricts. By 2023, however, the overall SD range in Haidian District had 630 
contracted, reflecting a reduced concentration of employment functions and a more even distribution 631 
across the region. Furthermore, disparities in job and residential functions among subdistricts and 632 
towns have diminished. These improvements signify meaningful advances in mitigating urban land 633 
use pressures and enhancing living conditions, aligning with the population and land use targets set 634 
forth in the Haidian District Planning (2017–2035). The observed trends confirm that Haidian 635 
District’s spatial development trajectory is consistent with its planning objectives. 636 

5.3 From Methodology to Practice: Policy recommendations for Urban Planning 637 
Our optimized JHSI methodology provides urban planners with an enhanced macro-638 

perspective quantitative tool to address imbalanced job-housing relationships amid rapid 639 
urbanization. Using Haidian District as a case study, we examine both the technical scalability and 640 
practical applications of this approach to derive policy recommendations. 641 

At the technical level, our geospatial big data-driven JHSI-optimized framework can be further 642 
integrated with AI to enable multi-scale regional data iteration and scenario upgrades, ultimately 643 
forming an intelligent job-housing interaction platform. For China’s territorial planning, a public-644 
private partnership model could effectively bridge internal assessments—such as identifying, 645 
evaluating, and optimizing key areas—with broader regional expansion strategies. A notable 646 
example is the Beijing Municipal Development and Reform Commission’s interactive Beijing 647 
Industrial Layout Map, which integrates multi-objective industrial patterns with policy guidance for 648 
commercial and planning applications. These developments demonstrate that, with further technical 649 
refinement, our approach can support decision-making in residential location selection, corporate 650 
commercial planning, government transportation infrastructure, and built-environment development 651 
through spatially visualized solutions. 652 

At the practical level, the method offers multidimensional value. First, it provides a scientific 653 
basis for regional industrial restructuring. Within the BTH coordinated development strategy, it 654 
enables Haidian District—a high-tech innovation hub—to amplify its impact by fostering a 655 
coordinated system where Beijing specializes in R&D while Tianjin and Hebei handle related 656 
production activities. Simultaneously, it facilitates the strategic relocation of Beijing’s non-capital 657 
functions, such as manufacturing, service sectors, and government offices. Spatially visualized job-658 
housing monitoring helps identify industrial clusters for relocation, evaluate spatial pressure on 659 
industries targeted for decentralization, and dynamically track balance adjustments. Second, the 660 
method can optimize public transit by targeting high-intensity or severely imbalanced job-housing 661 
zones through multi-period comparisons, thereby guiding station placement and route planning. For 662 
example, congestion in Haidian’s Zhongguancun and Shangdi areas could be alleviated by adding 663 
subway stations or adjusting bus schedules. Additionally, the approach informs urban renewal 664 
projects, such as the redevelopment of older neighborhoods. Third, it can improve the balanced 665 
allocation of educational resources. China’s school district system exacerbates spatial mismatches 666 
between jobs and housing, as concentrated elite schools inflate housing prices and induce long 667 
commutes. By embedding educational planning within industrial strategies—supported by our 668 
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optimized JHSI tool—these systemic “job spaces-education spaces-housing spaces” conflicts can 669 
be mitigated, promoting sustainable urban integration. 670 

5.4 Limitations 671 
Although the approach optimized in this study is effective for identifying urban job-housing 672 

spaces, three key limitations remain when compared to existing methods based on mobile signaling 673 
data. First, a major constraint of our JHSI framework is its inability to capture daily commuting 674 
flow information. Given that commuting patterns are crucial for understanding urbanization—as 675 
they reflect the spatial distribution and mobility of urban populations—this omission represents a 676 
significant drawback. Consequently, our framework can only generate a broad spatial representation 677 
of job-housing distributions, which, though useful for macro-level analyses, lacks granularity. 678 
Second, the absence of up-to-date census data (due to delays in statistical monitoring) and 679 
representative indicators for working and residential populations (including occupational status) 680 
hinders further improvements in JHSI accuracy. Third, although age-based filtering of mobile device 681 
users has excluded most non-working residents, and our methodology ensures robustness through 682 
correlation coefficients and trend analysis, additional data refinement is still needed for two specific 683 
groups: (1) working-age non-working individuals (particularly university students), and (2) 684 
occupationally mobile populations with irregular residence patterns (e.g., frequent intercity 685 
commuters). 686 

6 Conclusions 687 

This study develops a base station-oriented JHSI framework, highlighting the practical utility 688 
of LBS data for urban planning applications. By replacing individual trajectories with aggregated 689 
population clusters and geospatially classified functional station data, we propose a lightweight, 690 
efficient, and privacy-preserving JHSI method. Implemented in Haidian District, the approach 691 
achieves precision indices of 66% for work identification and 80% for residence identification, 692 
demonstrating its effectiveness for urban planning and management—particularly in supporting the 693 
2035 Plan objectives (e.g., housing allocation, population management, and spatial optimization)—694 
while reinforcing Haidian’s pivotal role in the BTH coordinated development strategy. Furthermore, 695 
we examine its future application potential from both technical platform development and 696 
implementation perspectives, focusing on: (1) facilitating Beijing’s non-capital function 697 
decentralization under the BTH regional coordinated development strategy; (2) promoting high-tech 698 
industrial growth in Tianjin and Hebei through Haidian’s innovation sector; (3) optimizing 699 
transportation planning, particularly in station selection and micro-scale road network design; and 700 
(4) guiding educational resource allocation to alleviate job-housing imbalances. 701 
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